پهنه‌بندی مخاطرات محیطی در مقاصد گردشگری با تأکید بر سیلاب (مطالعه موردی: شهرستان سروآباد، استان کردستان)

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 استادیار گروه مدیریت جهانگردی، دانشکدۀ میراث فرهنگی، صنایع‌دستی و گردشگری، دانشگاه مازندران، بابلسر، ایران

2 دانشجوی کارشناسی ارشد، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

3 کارشناسی ارشد گروه جغرافیا و برنامه ریزی شهری، دانشکده ادبیات و علوم انسانی، دانشگاه گیلان، رشت، ایران

چکیده

وقوع مخاطرات محیطی دارای خسارات چند بعدی و گسترده بر پیکره محیط طبیعی و جامعه بشری است. در میان مخاطرات محیطی، سیل از مهم‌ترین و پرتکراترین مخاطرات است که وقوع آن هر ساله، خسارات جانی، مالی و زیست محیطی متعدی را به همراه دارد. در میان مناطق مختلف، مقاصد گردشگری علاوه‌بر جامعه دائمی ساکن در آن‌ها، پذیرای تعداد قابل توجهی ازگردشگران هستند. این گردشگران در مقایسه با جامعه محلی آشنایی زیادی را محیط مقصد ندارد و ممکن است در معرض خطر بیشتری قرار داشته باشند. از این رو شناسایی فضاهای مستعد وقوع سیل در مقاصد گردشگری، می‌تواند ابزار مهمی برای کاهش خسارات ناشی از آن باشد. شهرستان سروآباد با توجه به برخورداری جاذبه‌های طبیعی و فرهنگی، از مهم‌ترین مقاصد گردشگری استان کردستان است. از این‌رو پژوهش کمی و کاربری حاضر با هدف پهنه‌بندی خطر سیلاب در شهرستان سروآباد انجام گرفته است. در این مطالعه برای دستیابی به هدف اصلی پژوهش، از 14 معیار موثر بر وقوع سیلاب استفاده شد. برای تجزیه و تحلیل داده‌ها از رویکرد داده‌محور و ابزارهای نوین سنجش‌ازدور و سامانه اطلاعات جغرافیایی و مدل MaxEnt استفاده شده است. نتایج پژوهش نشان داد با توجه لحاظ خطر وقوع سیل، در کلاس‌های پر خطر قرار دارد. به این صورت که از کل مساحت مورد بررسی (1044 کیلومتر مربع)، 84/96 درصد در پهنه‌های خطر بسیار کم و کم، 2/1 درصد در پهنه خطر متوسط و 96/1 درصد در پهنه خطر زیاد و بسیار زیاد قرار دارد. همچنین نتایج نشان داد اکثر پهنه‌های خطر زیاد و بسیار زیاد، به صورت نواری شکل در بخش‌های شمالی تا مرکزی شهرستان واقع شده‌اند. نتایج صحت‌سنجی مدل نهایی پژوهش با استفاده از نمودار Omission و Predicted Areaو منحنی ROC نشان داد مدل نهایی از دقت و عملکرد بالایی برخوردار بوده است و به خوبی توانسته است شهرستان سروآباد را به لحاظ وقوع سیلاب پهنه‎بندی نماید

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Zoning of Environmental Hazards in Tourism Destinations with Emphasis on Flooding (Case Study: Sarvabad County, Kurdistan Province)

نویسندگان [English]

  • Farhad Javan 1
  • Ramin Atashbahar 2
  • Azadeh Motalebpoor 3
1 Assistant Professor of Tourism Management, Faculty of Cultural Heritage, Handicrafts and Tourism, University of Mazandaran, Babolsar, Iran
2 Master's student, Department of Remote Sensing and Geographic Information Systems, Faculty of Geography, University of Tehran, Tehran, Iran
3 M.Sc. Department of Geography and Urban Planning, Faculty of Literature and Human Sciences, Rasht, Iran
چکیده [English]

The occurrence of environmental hazards has multidimensional and widespread damages on the natural environment and human society. Among environmental hazards, flooding is one of the most important and frequent hazards, which causes significant human, financial, and environmental losses every year. In different regions, tourist destinations, in addition to the permanent community living in them, welcome a significant number of tourists. Compared to the local community, these tourists are not very familiar with the destination environment and may be at greater risk. Therefore, identifying flood-prone areas in tourist destinations can be an important tool for reducing the damages caused by it. Sarvabad County is one of the most important tourist destinations in Kurdistan Province, due to its natural and cultural attractions. Therefore, the present quantitative and applied research has been conducted with the aim of zoning flood risk in Sarvabad County. In this study, 14 criteria affecting flood occurrence were used to achieve the main objective of the research. Data-driven approach and modern remote sensing tools, geographic information system and MaxEnt model were used to analyze the data. The results of the study showed that due to the mountainous nature of the region, a limited part of Sarvabad County is in high-risk classes in terms of flood risk. In this way, of the total area studied (1044 square kilometers), 96.84 percent is in very low and low risk zones, 1.2 percent is in medium risk zones and 1.96 percent is in high and very high-risk zones. The results also showed that most of the high and very high-risk zones are located in a strip shape in the northern to central parts of the county. The results of the validation of the final research model using the Omission and Predicted Area diagrams and the ROC curve showed that the final model had high accuracy and performance and was able to zone Sarvabad County in terms of flood occurrence.
 
Extended Abstract
 
Introduction
Despite the human, financial, environmental, etc. damages caused by floods, as well as the fact that a large part of our country's geographical space is flooded and the development of unplanned urbanization, studies indicate that flooding, as one of the natural disasters, can be properly monitored using modern technologies and information systems. The first step towards reducing the harmful effects of floods is to identify flood-prone areas and zoning these areas in terms of flood risk, so that, based on the results obtained, principled and optimal decisions can be made about the use of various agricultural, industrial, service land uses and the location of urban and rural settlements, and the harmful effects of floods can be minimized as much as possible. In order to achieve this goal, the use of a geographic information system (GIS) is one of the most important tools for identifying and zoning different areas in terms of flood risk and even other environmental hazards. Sarvabad County, with a population of 43,700, consisting of 8,800 urban and 34,900 rural residents, is one of the border counties located in western Iran and is always at risk of flooding due to its mountainous location, significant rainfall, and the rapid growth of physical development in urban and rural areas. Due to its natural and cultural attractions, this county is located within the Horaman Cultural Landscape, which was registered as a World Heritage Site by UNESCO in 2021. For this reason, it receives a significant number of tourists throughout the year. Therefore, flood risk management in this tourist destination has double value. In order to manage this risk, one of the most important measures is the zoning of Sarvabad County, relying on the geographic information system, so that high-risk spaces can be identified and necessary measures can be taken to take management measures in the future. Therefore, considering the multidimensional damages of flood risk as well as the human and natural conditions prevailing in Sarvabad County, the researchers in the present study are trying to answer the following questions: What is the spatial distribution of flood risk in different risk classes (very high risk to very low risk) in Sarvabad County? How is the validation of the final flood risk zoning model in Sarvabad County?
 
Methodology
This research is among the quantitative and applied researches that have been conducted with the aim of zoning flood risk in Sarvabad County using a data-driven approach and modern remote sensing tools and Geographic Information System (GIS). This study has been written in several systematic stages, considering the overall process governing it. In the first step, the factors and parameters affecting flood occurrence were identified by reviewing scientific records, reliable sources, and expert analyses. Then, these layers were converted to ASCII format for use in the modeling environment to enable their entry into the MaxEnt software. MaxEnt, as one of the powerful models based on maximum entropy, has a high ability in modeling the spatial potential of phenomena based on occurrence points and environmental variables. On the other hand, flood points in the study area were identified through past flood zoning maps, image analysis, and field observations, and after filtering, they were converted to CSV format to be used as training data in the MaxEnt model. In this study, the training and learning data were divided in a ratio of 20 to 80. Also, the number of points extracted was 250 flood points. This data plays a vital role in training the model and determining the relationship between environmental factors and spatial patterns of flooding. After running the model in the MaxEnt environment, a flood probability map was produced for Sarvabad County, which distinguishes different areas in terms of flood risk (very low risk, low risk, medium, high, and very high). The modeling results were also evaluated for validation with statistical indicators such as AUC to ensure the accuracy of the model. In the final step, the modeling outputs were extracted in the GISPro software environment and the generated maps were reviewed and analyzed.
 
Results and Discussion
The results of the study showed that due to the mountainous nature of the region, a limited part of Sarvabad County is in high-risk classes in terms of flood risk. In this way, of the total area studied (1044 square kilometers), 96.84 percent is in very low and low risk zones, 1.2 percent is in medium risk zones and 1.96 percent is in high and very high-risk zones. The results also showed that most of the high and very high-risk zones are located in a strip shape in the northern to central parts of the county. The results of the validation of the final research model using the Omission and Predicted Area diagrams and the ROC curve showed that the final model had high accuracy and performance and was able to zone Sarvabad County in terms of flood occurrence.
 
Conclusion
In line with flood risk management in Sarvabad County, the most important practical suggestions of the present study are: Accurate notification of the exact time of flood occurrence by the Meteorological and Hydrological Organization, distribution of zoning maps among urban and rural managers, installation of warning signs in the vicinity of areas at high and very high risk in terms of flood risk, prevention of construction and development of other physical activities in high-risk areas, accurate determination of hazard zones, especially in the vicinity of residential areas, efficient and optimal multilateral management of pastures and forests, construction of relief centers in high-risk areas, use of flood-resistant structures when developing various types of physical and structural infrastructure, and construction of diversion barriers to direct water to areas further away from residential centers..
 

کلیدواژه‌ها [English]

  • Environmental hazards
  • tourist destinations
  • floods
  • Hawraman
  1.  

    1. امیراحمدی، ابوالقاسم؛ کرامتی، صغری و احمدی، طیبه (1390). ریز پهنه‌بندی خطر سیلاب در محدوده شهر نیشابور در راستای توسعه شهری. فصلنامه علمی و پژوهشی پژوهش و برنامه­ریزی شهری، 2(7)، 91-110. https://dorl.net/dor/20.1001.1.22285229.1390.2.7.6.4
    2. آذریان، کامیار (1400). برآورد رواناب شهری و پهنه بندی آن با استفاده از تحلیل های فضایی در شهر بندرعباس. فصل نامه جغرافیا و برنامه ریزی شهری چشم انداز زاگرس، 13(50)، 54-27. https://sanad.iau.ir/Journal/zagros/Article/937815
    3. پایگاه خبری تحلیلی هاژه (1401). آمار جمعیت استان کوردستان به تفکیک شهرها در سال 1400. کد مطلب: 19163، 16 خرداد 1401، https://haje.ir/newsdetails.aspx?itemid=18063
    4. پناهی، قاسم؛ خداشناس، سعیدرضا؛ عقابی، شیما و خسروی منش، زهرا (1402). بهینه‌یابی موقعیت مکانی نقشه استاندارد سیل در پهنه‌بندی سیل با استفاده از مشخصه‌های ژئومورفولوژیکی. نشریه مهندسی عمران امیرکبیر، 55(9)، 1765-1786. https://doi.org/10.22060/ceej.2023.21664.7790
    5. جمینی، داود و شعبانی حسین آبادی، امیر (1404). شناسایی سکونتگاه‌های روستایی در معرض خطر سیل در منظر فرهنگی هورامان. روستا و توسعه پایدار فضا، مقاله آماده انتشار، https://doi.org/10.22077/vssd.2025.8898.1302
    6. رستمی، نورالدین و کاظمی، یونس (1398). پهنه بندی خطر سیلاب در محدوده شهر ایلام با استفاده از روش AHP و GIS. تحلیل فضایی مخاطرات محیطی، 6(1 )، 179-193. http://dx.doi.org/10.29252/jsaeh.6.1.10
    7. شعبانلو، سعید؛ صدقی، حسین؛ ثقفیان، بهرام و موسوی جهرمی، سید حبیب (1387). پهنه بندی سیلاب در شبکه رودخانه های استان گلستان با استفاده از GIS. پژوهش آب ایران، 2(2)، 11-22. https://iwrj.sku.ac.ir/article_10784.html
    8. صادقی، حجت و جوان، فرهاد (1403). ارزیابی روستاهای گردشگری ایران از لحاظ آسیب‌پذیری ژئوفیزیکی با استفاده از سناریوهای فازی. پژوهش­های روستائی، 15(4)، 85-100. https://doi.org/10.22059/jrur.2024.383580.1993
    9. صادقی، حجت و جوان، فرهاد (1404). آسیب­پذیری روستاهای گردشگری ایران از لحاظ مخاطره زمین لغزش با استفاده از GIS. جغرافیا (نشریۀ انجمن جغرافیایی ایران)، 23(84)، 153-170. https://doi.org/10.22034/jiga.2025.2055364.1385
    10. غلامی، محمد و احمدی، مهدی (1398). ریزپهنه‌بندی خطر سیلاب در شهر لامِرد با استفاده از AHP، GIS و منطق فازی. مخاطرات محیط طبیعی، 8(20)، 101-114. https://doi.org/10.22111/jneh.2018.22505.1334
    11. محمدی، ایوب؛ جمینی، داود و آتش بهار، رامین (1403)، شناسایی و تحلیل پهنه‌های در معرض مخاطره سیل در سکونتگاه غیررسمی نایسر ـ شهر سنندج. برنامه­ریزی و توسعه محیط شهری، 17(5): 64-53. https://sanad.iau.ir/Journal/juep/Article/1128137
    12. محمودزاده، حسن؛ امامی کیا، وحید و رسولی، علی اکبر (1394). ریزپهنه بندی خطر سیلاب در محدوده شهر تبریز با استفاده از روش AHP. فصل‌نامه تحقیقات جغرافیایی، ۳۰ (۱)، ۱۶۷-۱۸۰. https://georesearch.ir/article-1-652-fa.html
    13. مرکز آمار ایران (1395). جمعیت و خانوار شهرهای کشور به تفکیک جنس - سرشماری 1395، قابل دسترس در: https://amar.org.ir/statistical-information/statid/52308
    14. موسوی، سیده معصومه؛ نگهبان، سعید؛ رخشانی مقدم، حیدر و حسین زاده، سید محسن (1395). ارزیابی و پهنه‌بندی خطر سیل‌خیزی با استفاده از منطق فازی TOPSIS در محیط GIS (مطالعه موردی: حوضه‌ی آبخیز شهر باغملک). مخاطرات محیط طبیعی، 5(10)، 79-98. https://doi.org/10.22111/jneh.2017.2960
    15. Anusha, N., & Bharathi, B. (2020). Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 207–219. https://doi.org/10.1016/j.ejrs.2019.01.001
    16. Bullen, J., & Miles, A. (2024). Exploring local perspectives on flood risk: A participatory GIS approach for bridging the gap between modelled and perceived flood risk zones. Applied Geography, 163, 103176. https://doi.org/10.1016/j.apgeog.2023.103176
    17. Feng, Y., Xiao, Q., Brenner, C., Peche, A., Yang, J., Feuerhake, U., & Sester, M. (2022). Determination of building flood risk maps from LiDAR mobile mapping data. Computers, Environment and Urban Systems, 93, 101759. https://doi.org/10.1016/j.compenvurbsys.2022.101759
    18. González-Arqueros, M. L., Mendoza, M. E., Bocco, G., & Castillo, B. S. (2018). Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the Sierra-Costa region of Michoacán, Mexico. Journal of Environmental Management, 223, 685–693. https://doi.org/10.1016/j.jenvman.2018.06.075
    19. Li, Y., Martinis, S., Wieland, M., Schlaffer, S., & Natsuaki, R. (2019). Urban flood mapping using SAR intensity and interferometric coherence via Bayesian network fusion. Remote Sensing, 11(19), 2231. https://doi.org/10.3390/rs11192231
    20. Li, Z., Wang, C., Emrich, C. T., & Guo, D. (2018). A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods. Cartography and Geographic Information Science, 45(2), 97–110. https://doi.org/10.1080/15230406.2016.1271356
    21. Popa, M. C., Peptenatu, D., Drăghici, C. C., & Diaconu, D. C. (2019). Flood hazard mapping using the flood and flash-flood potential index in the Buzău River catchment, Romania. Water, 11, 2116. https://doi.org/10.3390/w11102116
    22. Prasad, P., Loveson, V. J., Das, B., & Kotha, M. (2021). Novel ensemble machine learning models in flood susceptibility mapping. Geocarto International, 37(16), 4571–4593. https://doi.org/10.1080/10106049.2021.1892209
    23. Rincón, D., Khan, U. T., & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences, 8(8), 275. https://doi.org/10.3390/geosciences8080275
    24. Sanders, B. F., Schubert, J. E., Goodrich, K. A., Houston, D., Feldman, D. L., Basolo, V., ... Matthew, R. A. (2020). Collaborative modeling with fine-resolution data enhances flood awareness, minimizes differences in flood perception, and produces actionable flood maps. Earth’s Future, 8, e2019EF001391. https://doi.org/10.1029/2019EF001391
    25. Shabani Hosainabadi, A., & Jamini, D. (2025). Zoning of environmental hazards in rural areas of western Iran. Journal of Sustainable Rural Development, 9(1), 71–82. https://doi.org/10.22034/jsrd.2025.508315.1214
    26. Swain, K. C., Singha, C., & Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720. https://doi.org/10.3390/ijgi9120720