برآورد بارش بهاره ایران از طریق تابش موج‌بلند خروجی زمین(با تأکید بر شمال‌غرب کشور)

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 دکتری، گروه آب و هواشناسی، دانشکده جغرافیا و برنامهریزی، دانشگاه تبریز، تبریز، ایران

2 استاد، گروه آب و هواشناسی، دانشکده جغرافیا و برنامه‌ریزی، دانشگاه تبریز، تبریز، ایران.

3 دانشیار، گروه آب و هواشناسی، دانشکده جغرافیا و برنامه‌ریزی، دانشگاه تبریز، تبریز، ایران.

10.22034/ermr.2025.63416

چکیده

بارش‌هایی که اغلب در فصل بهار و در مناطق کوهستانی شمال‌غرب کشور اتفاق می‌افتد، با ایجاد سیلاب موجب تخریب محیط زیست و زیرساخت‌های انسانی می‌شوند. تابش موج‌بلند خروجی زمین به ‌عنوان پارامتری مهم جهت شناسایی ابرها و برآورد این نوع بارش، مورد مطالعه قرار می‌گیرد. هدف از پژوهش حاضر این است که با استفاده از محصولات سنجنده AIRS ماهواره آکوا و ماهواره GPM، ارتباط و تحلیل متغیرهای تابش موج‌بلند زمینی و مقادیر بارش را در محیط نرم افزار Arc GIS به مدت 17 سال آماری برای کشور ایران بررسی نماید. از مدل های همبستگی و رگرسیون و برآورد سطح اطمینان به منظور ارتباط‌سنجی تابش موج بلند خروجی در پیش بینی الگوهای بارشی و نحوه تغییرات آن استفاده شد. با توجه به نتایج بدست آمده در ماه آپریل و می در شمال‌غرب کشور همبستگی‌های منفی بالای 60 درصد مشاهده شد که عامل ابرناکی می‌تواند دلیل آن باشد، در ماه ژوئن به جز مناطقی در شمال‌غرب و جنوب‌شرق ایران که حاکی از همبستگی منفی بارش و تابش موج بلند خروجی زمین است، همبستگی‌های منفی قوی دیگر در سایر مناطق کشور به دلیل رطوبت حبس شده در جو زمین و عدم وجود عامل صعود و ناپایداری به دلیل وجود پرفشار جنب‌حاره‌ای می باشد که باعث کاهش تابش موج‌بلند خروجی زمین است، ولی در واقع هیچ گونه بارشی انجام نگرفته است بنابرین با استفاده از نقشه های سطح اطمینان، می‌توان از متغیر تابش موج‌بلند خروجی در ماه آپریل دراکثر مناطق کشور، در ماه می در محدوده شمال‌غرب و در ماه ژوئن در نقاطی در عرض‌های جغرافیایی بالا در شمال غرب و در جنوب‌شرق کشور جهت برآورد بارش‌های همرفتی استفاده کرد، در سایر مناطق این ارتباط معکوس نمی‌تواند جهت پیش‌بینی استفاده گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Iran's spring rainfall through Outgoing Longwave Radiation from the earth (with emphasis on the northwest of the country)

نویسندگان [English]

  • Omid Eskandari 1
  • Behrooz sari sarraf 2
  • Hashem Rostamzadeh 3
1 Ph.D., Department of Climatology, Faculty of Geography and Planning, University of Tabriz, Tabriz, Iran
2 Professor, Department of Climatology, Faculty of Geography and Planning, University of Tabriz, Tabriz, Iran.
3 associate professor, Department of Climatology, Faculty of Geography and Planning, University of Tabriz, Tabriz, Iran.
چکیده [English]

The rains that often occur in the spring season and in the mountainous areas of the northwest of the country cause floods and destroy the environment and human infrastructure. Earth outgoing long-wave radiation is studied as a significant parameter to detect clouds and estimate this type of precipitation. The current study aims to examine the relationship and analysis of outgoing long-wave radiation variables and precipitation values in Arc GIS software environment for 17 statistical years for Iran using AIRS sensor products of Aqua satellite and GPM satellite. Correlation and regression models and confidence interval estimation were used to measure the correlation of outgoing long-wave radiation in predicting precipitation patterns and their changes. Regarding the results obtained in April and May in the northwest of the country, negative correlations above 60% were observed, which may be due to a cloudy factor, In June except in areas in the northwest and southeast of Iran, which indicate a negative correlation between precipitation and outgoing long-wave radiation, other strong negative correlations in other parts of the country were detected due to moisture trapped in the Earth's atmosphere and the lack of rising and instability due to subtropical high pressure, which reduces the radiation of the earth outgoing long-wave radiation. Consequently, using confidence interval maps, the OLR variable can be used to estimate convective precipitation in April in most parts of the country, in May for the northwest, and in June for high latitudes in the northwest and southeast of the country. in other areas, this inverse relationship cannot be used to predict precipitation.

Extended Abstract
 
Introduction
One of the reasons for the variability of rainfall in Iran is the presence of unique geographical and topographical conditions in the country. This creates a suitable environment for the formation of convective precipitation. Considering the role of convective rainfall in damaging natural and human infrastructures, studying these types of rainfall has attracted significant attention from researchers in recent years. It holds special importance in policymaking and planning across various sectors such as agriculture, water management, urban planning, construction, and transportation.Several important factors influence the occurrence of convective precipitation. One of these factors, which is an effective parameter for identifying and forecasting this type of rainfall, is the Outgoing Longwave Radiation (OLR) emitted by the Earth. Long-term measurement of Earth's outgoing longwave radiation is essential for quantitative understanding of climatic conditions. This variable is studied as an important parameter for cloud identification and rainfall estimation. High values of outgoing longwave radiation indicate cloud-free areas and thus warmer land surfaces, whereas cloudy regions have low outgoing longwave radiation, which can be detected by sensors. Therefore, the inverse relationship between outgoing longwave radiation and rainfall can be used to identify areas of convective precipitation.
 
Methodology
Rainfall events, which mostly occur during the spring season in the mountainous regions of northwestern Iran, often cause floods that lead to the destruction of the environment and human infrastructures. Outgoing Longwave Radiation (OLR) is studied as an important parameter for cloud identification and estimation of this type of precipitation.The aim of the present research is to analyze the relationship between terrestrial outgoing longwave radiation variables and precipitation amounts using AIRS sensor products from the Aqua satellite and data from the GPM satellite. This analysis is conducted statistically over 17 years for Iran within the ArcGIS software environment. Correlation and regression models, along with confidence level estimations, were employed to investigate the relationship of outgoing longwave radiation in predicting rainfall patterns and their variations.
 
Results and Discussion
According to the obtained results, in April and May, negative correlations above 60% were observed in northwestern Iran, which can be attributed to cloud cover. In June, except for areas in the northwest and southeast of Iran that show a negative correlation between precipitation and outgoing longwave radiation (OLR), other regions of the country exhibited strong negative correlations due to moisture trapped in the atmosphere and the absence of upward movement and instability caused by the subtropical high-pressure system. This leads to a reduction in outgoing longwave radiation, but no actual precipitation occurs.Therefore, using confidence level maps, the OLR variable can be utilized to estimate convective rainfall in most parts of the country during April, in the northwestern region in May, and in some high-latitude areas in the northwest and southeast in June. However, in other regions, this inverse relationship cannot be used for rainfall prediction.
 
Conclusion
Based on this research, it can be concluded that in April, in the northwestern regions and mountain slopes where orographic convection occurs, cloud cover is a major factor explaining the high negative correlations exceeding 60%. In areas where precipitation systems originate from outside the country, the negative correlations tend to be lower. In May, most of the rainfall in northwestern Iran, the northeastern mountains, and the central mountains is convective in nature, showing similarly high negative correlations.In June, except for small areas in the northwest and southeast of Iran that exhibit a negative correlation between precipitation and outgoing longwave radiation (OLR), other regions show strong negative correlations caused by moisture trapped in the atmosphere and the lack of upward motion and instability due to the presence of the subtropical high-pressure system. This leads to a reduction in OLR, but no actual precipitation occurs.According to the correlation maps, a negative relationship between daily outgoing longwave radiation and precipitation was observed on monthly and seasonal timescales. This inverse relationship was statistically significant at the 0.05 error level and 95% confidence, confirmed by the significance test of correlation (t-test).Therefore, using confidence level maps, the OLR variable can be applied to estimate convective rainfall in most parts of the country during April, in the northwest in May, and in some northern latitudes in the northwest and southeast in June. However, in other regions, this inverse relationship cannot be used for precipitation prediction.

کلیدواژه‌ها [English]

  • Precipitation
  • outgoing long wave radiation
  • AIRS Sounder
  • GPM satellite
  • Iran
  • حجازی زاده، زهرا؛ بزمی، نسرین؛ رحیمی، علیرضا؛ طولایی نیاد، میثم و بساک، عاطفه. (۱۳۹۶). مدلسازی فضایی- زمانی آلبدو در گستره‌ی ایران زمین. نشریه تحقیقات علوم جغرافیایی، ۱۷(۴۷)، ۱۷-۱. http://dorl.net/dor/20.1001.1.22287736.1396.17.47.6.8
  • سلیقه، محمد؛ ناصرزاده، محمدحسین و غفاری، علی. (۱۳۹۷). بارش بهاری و تابش طول موج بلند خروجی زمین (مطالعه موردی بارش ۱۵ آوریل ۲۰۱۶ شمال غرب ایران). فصلنامه جغرافیایی سرزمین، ۱۵(۵۷)، ۴۷-۲۹. https://sanad.iau.ir/Journal/sarzamin/Article/822838
  • علایی طالقانی، محمود. (۱۳۸۲). رئومورفولوژی ایران (چاپ دوم). نشر قومس.
  • کفایت مطلق، امید رضا و خسروی، محمود. (۱۳۹۷). واکاوی روند سالانه تابش زمین‌تاب ایران با داده‌های دورسنجی. دومین کنفرانس ملی آب و هواشناسی ایران، دانشگاه فردوسی مشهد. https://civilica.com/doc/781128/
  • کفایت مطلق، امید رضا؛ خسروی، محمود و مسعودیان، سید ابوالفضل. (۱۳۹۸). تحلیل میانگین درازمدت تابش بلند زمینی ایران با داده‌های سنجش از دور. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی، ۲۸(۱۰۹)، ۲۰۹-۲۰۰. https://doi.org/10.22131/sepehr.2019.35647
  • موقری، علیرضا. (۱۳۹۴). بررسی تغییر مکانی پدیده منطقه همگرایی میان‌حاره‌ای و نوسان مادن-جولین بر گردش عمومی جو منطقه و اقلیم ایران. (رساله دکتری، دانشگاه سیستان و بلوچستان، دانشکده جغرافیا و برنامه‌ریزی محیطی).
  • Crowley, T. J., & North, G. R. (1991). Paleoclimatology.
  • Gruber, A., & Winston, J. S. (1978). Earth-atmosphere radiative heating based on NOAA scanning radiometer measurements. Bulletin of the American meteorological Society59(12), 1570-1573. https://doi.org/10.1175/1520-0477(1978)059%3C1570:EARHBO%3E2.0.CO;2
  • Hamal, K., Sharma, S., Baniya, B., Khadka, N., & Zhou, X. (2020). Inter-annual variability of Winter Precipitation coupled with ocean-atmospheric patterns over Nepal during 1987-2015. Frontiers in Earth Science8, 161. https://doi.org/10.3389/feart.2020.00161
  • Hao, S., Li, F., Li, Y., Gu, C., Zhang, Q., Qiao, Y., ... & Zhu, N. (2019). Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Science of the Total Environment657, 1041-1050. https://doi.org/10.1016/j.scitotenv.2018.12.102
  • https://gpm.nasa.gov/missions/GPM-
  • Jin, Z., Zhang, Y., Del Genio, A., Schmidt, G., & Kelley, M. (2019). Cloud scattering impact on thermal radiative transfer and global longwave radiation. Journal of Quantitative Spectroscopy and Radiative Transfer239, 106669. https://doi.org/10.1016/j.jqsrt.2019.106669
  • Karnauskas, K. B., & Li, L. (2016). Predicting Atlantic seasonal hurricane activity using outgoing longwave radiation over Africa. Geophysical Research Letters43(13), 7152-7159. https://doi.org/10.1002/2016GL069792
  • Kiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., ... & Ventrice, M. J. (2014). A comparison of OLR and circulation-based indices for tracking the MJO. Monthly Weather Review142(5), 1697-1715. https://doi.org/10.1175/MWR-D-13-00301.1
  • Kofroňová, J., Tesař, M., & Šípek, V. (2019). The influence of observed and modelled net longwave radiation on the rate of estimated potential evapotranspiration. Journal of Hydrology and Hydromechanics67(3), 280-288. DOI: 10.2478/johh-2019-0011
  • Koll, D. D., & Cronin, T. W. (2018). Earth’s outgoing longwave radiation linear due to H2O greenhouse effect. Proceedings of the National Academy of Sciences115(41), 10293-10298. https://doi.org/10.1073/pnas.1809868115
  • Kousky Vernon (1988). Pentad Outgoing longwave Radiation Climatology for the south American Sector. Revista Brasileira de Meteorologia, vol 3.
  • Kumar, A., Sarthi, P. P., Kumari, A., & Sinha, A. K. (2021). Observed Characteristics of Rainfall Indices and Outgoing Longwave Radiation over the Gangetic Plain of India. Pure and Applied Geophysics178(2), 619-631. https://doi.org/10.1007/s00024-021-02666-6
  • Liebmann, B., & Smith, C. A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6), 1275-1277.
  • Lim, E. S., Wong, C. J., Abdullah, K., & Poon, W. K. (2011, December). Relationship between outgoing longwave radiation and rainfall in South East Asia by using NOAA and TRMM satellite. In 2011 IEEE Colloquium on Humanities, Science and Engineering(pp. 785-790). IEEE. https://doi.org/10.1109/CHUSER.2011.6163843
  • Liu, X., Chen, Q., Yang, Q., Cheng, B., & Hua, W. (2008, December). Study on Teleconnection between Winter Convective Activity over Tropical Indian Ocean and Pacific Ocean and Subsequent Summer Precipitation in China Based on Satellite-Derived Data. In 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing(Vol. 1, pp. 149-154). IEEE. https://doi.org/10.1109/ETTandGRS.2008.84
  • Modarres, R., & da Silva, V. D. P. R. (2007). Rainfall trends in arid and semi-arid regions of Iran. Journal of arid environments70(2), 344-355. https://doi.org/10.1016/j.jaridenv.2006.12.024
  • Mu, D., Luo, P., Lyu, J., Zhou, M., Huo, A., Duan, W., ... & Zhao, X. (2021). Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. Journal of Flood Risk Management14(1), e12668. https://doi.org/10.1111/jfr3.12668
  • Nastos, P. T., Dalezios, N. R., Faraslis, I. N., Mitrakopoulos, K., Blanta, A., Spiliotopoulos, M., & Tarquis, A. M. (2020). Risk management framework of environmental hazards and extremes in Mediterranean ecosystems. Natural Hazards and Earth System Sciences Discussions, 1-32. https://doi.org/10.5194/nhess-21-1935-2021
  • Panchawagh, N. V. (2006). Seasonal variation of SST and mean OLR distribution over Indian Ocean warm pool.  Ind. Geophys. Union (July 2006)10(3), 167-173.
  • Prasad, K. D., Bansod, S. D., & Sabade, S. S. (2000). Forecasting Indian summer monsoon rainfall by outgoing longwave radiation over the Indian Ocean. International Journal of Climatology: A Journal of the Royal Meteorological Society20(1), 105-114. https://doi.org/10.1002/(SICI)1097-0088(200001)20:1%3C105::AID-JOC459%3E3.0.CO;2-1
  • Pushpanjali, B., Subrahmanyam, M. V., & Murty, K. P. R. (2020). Relation between outgoing longwave radiation and findlater jet over Arabian Sea during summer monsoon and influence on Indian monsoon rainfall. http://nopr.niscpr.res.in/handle/123456789/54422
  • Schreck, C. J., Lee, H. T., & Knapp, K. R. (2018). HIRS outgoing longwave radiation—Daily climate data record: Application toward identifying tropical subseasonal variability. Remote Sensing, 10(9), 1325. https://doi.org/10.3390/rs10091325
  • Sloat, L. L., Gerber, J. S., Samberg, L. H., Smith, W. K., Herrero, M., Ferreira, L. G., ... & West, P. C. (2018). Increasing importance of precipitation variability on global livestock grazing lands. Nature Climate Change, 8(3), 214-218. https://doi.org/10.1038/s41558-018-0081-5
  • Song, Y., Webster, P. J., & Min, D. (1992). Longitudinal heating gradient: Another possible factor influencing the intensity of the Asian summer monsoon circulation. Advances in atmospheric sciences9(4), 397-410. https://doi.org/10.1007/BF02677073
  • Su, H., Jiang, J. H., Neelin, J. D., Shen, T. J., Zhai, C., Yue, Q., ... & Yung, Y. L. (2017). Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nature communications8(1), 1-9. DOI: 10.1038/ncomms15771
  • Su, W., Loeb, N. G., Liang, L., Liu, N., & Liu, C. (2017). The El Niño–Southern Oscillation effect on tropical outgoing longwave radiation: A daytime versus nighttime perspective. Journal of Geophysical Research: Atmospheres122(15), 7820-7833. https://doi.org/10.1002/2017JD027002
  • Susskind, J., Molnar, G., Iredell, L., & Loeb, N. G. (2012). Interannual variability of outgoing longwave radiation as observed by AIRS and CERES. Journal of Geophysical Research: Atmospheres117(D23). https://doi.org/10.1029/2012JD017997
  • Talchabhadel, R., Karki, R., Thapa, B. R., Maharjan, M., and Parajuli, B. (2018). Spatio-temporal variability of extreme precipitation in Nepal. Int. J. Climatol. 38, 4296–4313. https://doi.org/10.1002/joc.5669
  • Xie, P., & Arkin, P. A. (1998). Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. Journal of Climate11(2), 137-164. https://doi.org/10.1175/1520-0442(1998)011%3C0137:GMPEFS%3E2.0.CO;2
  • Yang, Y., & Roderick, M. L. (2019). Radiation, surface temperature and evaporation over wet surfaces. Quarterly Journal of the Royal Meteorological Society145(720), 1118-1129. https://doi.org/10.1002/qj.3481
  • Zhang, K., Randel, W. J., & Fu, R. (2017). Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Climate Dynamics49(7), 2911-2929. DOI 10.1007/s00382-016-3501-0