Landslide susceptibility mapping in the vicinity of dams in mountainous areas using remote sensing and geographic information system (case study: Cheragh Veys Dam, Saqqez city)

Document Type : applied research

Author

Assistant Professor, Department of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran

Abstract

The movement of sedimentary layers that occurs due to different reasons such as earthquakes, volcanoes, anthropogenic activities, heavy rainfall or loose soil is called landslide. Landslides sometimes cause irreparable financial and human losses. The aim of this research is to predict the location of the risk of landslides around the newly established Cheragh veys dam using fuzzy overlap and weighted aggregation models in QGIS environment. For this purpose, 11 factors of, slope, aspect, height, distance to the road, distance to the river, road density, river density, curvature, topographic wetness index, stream power index and vegetation cover were used. The results of the study show that both models performed somewhat similar in detecting areas of low sensitivity to very high sensitivity. In both models, more than half of the area is prone to landslides. The findings of this study can be used by decision makers and managers to reduce the risks of landslides.
 
Extended Abstract
 
Introduction
Landslides involve the slow to rapid movement of materials down slopes caused by a wide range of natural processes and human activities. Every year, these events result in economic losses and numerous casualties in the province and the country, posing a significant threat to people living in these areas. In general, in Iran and specifically in Kurdistan province, landslides are a constant threat to infrastructure, agriculture, other natural resources, and tourism. Local administrations are sometimes under financial and logistical pressure to address these issues. Most landslides in Iran are caused by heavy rainfall. Certain areas, such as those around newly established dams and roads in mountainous regions, are particularly susceptible to landslides and may become more unstable due to human interventions. This research addresses the same issue and aims to use remote sensing techniques and geographic information systems to zone landslide-sensitive areas around the newly established Cheragh Weis Saqez dam. Over the past few decades, there have been tremendous advances in remote sensing science and geographic information systems, facilitating the preparation of landslide susceptibility maps. These maps, as comprehensive resources, can be used by policymakers and decision-makers to mitigate financial losses caused by landslides. A wide range of models and methods, including hierarchical analysis, the entropy index, geographically weighted principal components, machine learning methods, artificial neural networks, support vector machines, fuzzy logic, and others, have been proposed for preparing landslide susceptibility maps. It should be noted that since the Cheragh Weis dam is newly established, no studies have been conducted in this regard for the area under study so far. This present study, a comprehensive effort, will zone the areas prone to landslides around the aforementioned dam for the first time. Due to the complexity of predicting landslide risks, many researchers have proposed a hybrid model approach. Among these, the alternative decision tree (ADTree) is noteworthy. Both simple and hybrid models have been employed in studies of floods, fires, droughts, gully erosion, land subsidence, and landslides. This study uses fuzzy overlay and weighted aggregation models to create a map of landslide-prone areas around the new Cheragh Weis dam.
 
Methodology
The first step in landslide studies is identifying historical locations and the factors that influence landslides. This research focuses solely on zoning areas sensitive to landslides. In the present study, 11 factors influencing landslides were selected based on previous research, specialized knowledge, and the physical characteristics of the study area. Additionally, two models—fuzzy overlap and weighted aggregation—were used to produce a landslide susceptibility map. A digital elevation model (DEM) was employed within a geographic information system (GIS) environment to generate the 11 factors. After reclassification, these factors were used to create the landslide susceptibility map. It should be noted that the spatial resolution of the 11 selected factors is 30 meters, which is suitable for producing a landslide susceptibility map of the study area. Since the DEM, from which most of the layers were derived, had a resolution of 30 meters, its derivatives naturally have the exact spatial resolution. Landsat satellite imagery, with a multi-spectral band resolution of 30 meters, was also used to create the vegetation map. Additionally, the road layer was extracted from Google Earth with high accuracy, and the distance from roads and road density maps were resampled to produce a suitable final map with a spatial resolution of 30 meters. The layers extracted from the DEM in the GIS included slope direction, slope, elevation, topographic wetness index, stream power index, and curvature. Furthermore, river density, road density, distance from roads, distance from rivers, and vegetation were extracted in the GIS to produce the final map. In this study, the fuzzy overlap model and the weighted aggregation model were used to achieve the desired objectives.
 
Results and Discussion
The research findings indicate that in the weighted accumulation model, about 10 square kilometers of the area fall into the low sensitivity group, while 17 square kilometers are at very high risk. Additionally, 26 square kilometers of land around the Cheragh Weis Dam are classified as having medium sensitivity. Finally, a large and significant portion of the area, totaling 32 square kilometers, belongs to the high-sensitivity group. The quantitative results demonstrate that the area is highly prone to landslides and should be carefully monitored by authorities to prevent potential financial losses and risks to life. The weighted overlap model also predicts a similar trend with some variations. In this model, about 2 square kilometers have been added to the areas with low sensitivity. The medium sensitivity group covers 25 square kilometers. Meanwhile, 34 square kilometers of land around the dam is associated with a high risk of landslides. In the fuzzy overlap model, 3 square kilometers of land are exposed to a very high risk of landslide occurrence, which is less than in the weighted accumulation model.
 
Conclusion
Landslides, if they occur in residential, tourism, and agricultural areas, can cause significant destruction. Without identifying high-risk areas and under the right conditions, they can result in irreparable financial and human losses. Landslide risk zoning maps enable organizations and officials to monitor high-risk areas in a targeted manner and, if necessary, implement preventive measures to avert accidents. Globally, landslides cause millions of dollars in financial losses yearly, resulting in numerous injuries and fatalities. This risk also leads to economic and human losses in our country. The results of this study can assist authorities in securing landslide-prone areas and preventing potential damages. One limitation of the current research was the lack of access to the southern parts of the dam due to the flooding of the connecting bridges after the dam was drained. Future research could utilize InSAR or DInSAR models to identify landslides, providing better and more accurate modeling for such studies.
 
Financial sponsor
I am grateful for the financial support of the University of Kurdistan (contract number 21118/12/02/p) in conducting this research.
 
Contribution of the authors to the research
This research was completely done by the author.
 
Conflict of interest
The author declares that he has no conflict of interest in writing or publishing this article.
 
Appreciation and thanks
The author sincerely thanks and appreciates the people of Mirdeh and Chirag Weis villages for their cooperation in collecting field data for writing this article.

Keywords

Main Subjects


  1. الفتی، سعید، صفرپور، فرشاد، و محمودآبادی، مهدی. (1391). زمین لغزش و انواع روش‌های مطالعه. رشد آموزش جغرافیا، 26(4)، 31-38. https://www.roshdmag.ir/fa/article/5672/
  2. براتی، زهرا، امیدوار، ابراهیم، و شیرزادی، عطااله. (1397). پیش‌بینی مکانی زمین لغزش‌های سطحی با استفاده از مدل‌های آماری و یادگیری ماشین (مطالعه‌ی موردی: حوضه سرخون). مرتع و آبخیزداری (منابع طبیعی ایران)، 71(4 )، 869-884. https://doi.org/10.22059/jrwm 2018.268247.1314
  3. جویباری، جمشید، کاویان، عطااله، و مصطفایی، جمال. (1396). تأثیر کاربری زمین بر زمین لغزش در منطقه‌ی توان, قزوین. پژوهش‌های آبخیزداری (پژوهش و سازندگی)، 30(116 )، 29-39. https://doi.org/10.22092/wmej. 2017.116713
  4. حجازی، سیداسداله. (1393). پهنه‌بندی خطر زمین لغزش در حوضه گویجه بل اهر با استفاده از سیستم اطلاعات جغرافیایی (GIS). جغرافیا و برنامه‌ریزی، 18(50)، 135-152. https://geoplanning. tabrizu.ac.ir/article_3127. html
  5. حیدری، ناصر، حبیب نژاد، محمود، کاویان، عطااله، و پورقاسمی، حمیدرضا. (1399). مدل‌سازی حساسیت زمین لغزش با الگوریتم یادگیری ماشین جنگل تصادفی در آبخیز سد رئیسعلی دلواری. پژوهش‌های آبخیزداری (پژوهش و سازندگی)، 33(1 (پیاپی 126) )، 2-13. https://doi.org/10.22092/wmej. 2019.126288.1219
  6. رضایی مقدم، محمدحسین، نیک جو، محمدرضا، ولی‌زاده کامران، خلیل، بلواسی، ایمانعلی، و بلواسی، مهدی. (1396). کاربرد مدل شبکه عصبی مصنوعی در پهنه‌بندی خطر زمین لغزش. جغرافیا و برنامه‌ریزی، 21(59)، 89-111. https://geoplanning. tabrizu.ac.ir/article_6126. html
  7. رمضانی گورابی، بهمن و ابراهیمی، هدی. (1388). زمین لغزش و راهکار‌های تثبیت آن. آمایش محیط، 2(7)، 129-139. https://www.sid.ir/paper/130428/fa
  8. روستایی، شهرام، حجازی، اسداله، رجبی، معصومه، جلالی، نادر، و نجفی ایگدیر، احمد. (1397). کاربرد منطق فازی در پهنه‌بندی خطر زمین لغزش در حوضه آبخیز نازلوچای. پژوهش‌های ژئومورفولوژی کمی، 6(4 )، 103-119. https://dorl.net/dor/20.1001.1.22519424.1397.6.4.7.4
  9. روستایی، شهرام؛ مختاری کشکی، داوود، و اشرفی فینی، زهرا. (1399). پهنه‌بندی خطر زمین لغزش در حوضه آبریز طالقان با استفاده از شاخص آنتروپی شانون. جغرافیا و برنامه‌ریزی، 24(71 )، 125-150. https://geoplanning. tabrizu.ac.ir/article_10631. html
  10. سوری، سلمان، لشکری پور، غلامرضا، غفوری، محمد، و فرهادی نژاد، طاهر. (1390). پهنه‌بندی خطر زمین لغزش با استفاده از شبکه عصبی مصنوعی؛ مطالعه موردی: حوضه کشوری (نوژیان). زمین‌شناسی مهندسی، 5(2)، 1269-1286. http://dorl.net/dor/20.1001.1.22286837.1390.5.2.5.2
  11. شیرانی، کوروش، و خوش باطن، محبوبه. (1395). بررسی و پایش زمین لغزش فعال با استفاده از روش تداخل سنجی تفاضلی راداری (مطالعه موردی: زمین لغزش نقل, سمیرم). کواترنری ایران، 2(1)، 53-66. https://doi.org/10.22034/irqua. 2016.701900
  12. کاردان، رحمت اله، و یادگارزایی، محمدحسن. (1386). زمین لغزش در استان سیستان و بلوچستان (مطالعه موردی زمین لغزش نرون شهرستان خاش). همایش زمین‌شناسی کاربردی و محیط زیست.
  13. کرد، فاطمه، و عزیزپور، فرهاد. (1384). کاربرد سیستم اطلاعات جغرافیایی در پهنه‌بندی خطر زمین لغزش. همایش سیستم‌های اطلاعات مکانی. https://civilica.com/doc/3648
  14. کرمی، فریبا، بیاتی خطیبی، مریم، خیری‌زاده، منصور، و مختاری اصل، ابوالفضل. (1398). ارزیابی کارایی الگوریتم ماشین بردار پشتیبان در پهنه‌بندی حساسیت زمین لغزش حوضه آبریز اهرچای. جغرافیا و مخاطرات محیطی، 8(32 )، 1-17. https://doi.org/10.22067/geo. v8i4.83263
  15. محمدی، مجید، و نور، حمزه. (1398). پهنه‌بندی حساسیت زمین لغزش با استفاده از روش ترکیبی جدید در محیط GIS. علوم و تکنولوژی محیط زیست، 21(12 (پیاپی 91) )، 135-146. https://doi.org/10.22034/jest. 2019.28413.3721
  16. محمدی، مهدی، و توکلی، حسین. (1387). تعیین هندسه قبل از لغزش در زمین لغزش‌ها با نگرشی به زمین لغزش محمدآباد جیرفت. مهندسی عمران شریف (شریف ویژه مهندسی عمران)، 24(44 (ویژه مهندسی عمران و مکانیک))، 59-62. https://sjce.journals.sharif.edu/article_20240.html
  17. مقتدر، عطیه، بحرودی، عباس، شریفی، محمدعلی، و مهدوی فر، محمدرضا. (1389). پهنه‌بندی خطر زمین لغزش استان لرستان با استفاده از منطق فازی. همایش انجمن زمین‌شناسی ایران، -(14)، 0-0.
  18. مقصودلو، رضا. (1386). زمین لغزش‌های گرگان و راه‌های مقابله با آن (مطالعه موردی زمین لغزش کوی محتشم گرگان). همایش زمین‌شناسی کاربردی و محیط زیست.
  19. نوجوان، محمدرضا. (1395). بررسی مورفومتری و پایش زمین لغزش به کمک سنجش از دور (مطالعه موردی زمین لغزش هاردنگ, غرب استان اصفهان). جغرافیای طبیعی، 9(3 (پیاپی 33))، 95-107. https://sanad. iau.ir/Journal/jopg/Article/983105
  20. ویس کرمی، علی، و نوفرستی، حسین. (1401). تحلیل و بررسی زمین لغزش پاهلت. مدیریت بحران، 11(21 )، 17-27. https://dorl.net/dor/20.1001.1.23453915.1401.11.1.1.8
  21. Guzzetti, F. , Reichenbach, P. , Ardizzone, F. , Cardinali, M. , & Galli, M. (2006). Estimating the quality of landslide susceptibility models. Geomorphology, 81(1-2), 166-184. https://www.sciencedirect.com/science/article/abs/pii/S0169555X06001371
  22. Zhang, W. , He, Y. , Wang, L. , Liu, S. , & Meng, X. (2023). Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing. Geological Journal, 58(6), 2372-2387.https://onlinelibrary. wiley.com/doi/abs/10.1002/gj. 4683
  23. Azarafza, M. , Azarafza, M. , Akgün, H. , Atkinson, P. M. , & Derakhshani, R. (2021). Deep learning-based landslide susceptibility mapping. Scientific reports, 11(1), 24112.https://www.nature.com/articles/s41598-021-03585-1
  24. Shahabi, H. , & Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific reports, 5(1), 9899. https://www.nature.com/articles/srep09899
Volume 1, Issue 1
May 2024
Pages 15-24
  • Receive Date: 13 April 2024
  • Revise Date: 10 May 2024
  • Accept Date: 12 June 2024
  • First Publish Date: 19 June 2024
  • Publish Date: 20 June 2024